from typing import (
Any,
Callable,
Dict,
FrozenSet,
Mapping,
Optional,
Sequence,
Set,
Tuple,
)
from dagster import (
AssetCheckSpec,
AssetDep,
AssetKey,
AssetOut,
AssetsDefinition,
BackfillPolicy,
DagsterInvalidDefinitionError,
Nothing,
PartitionsDefinition,
TimeWindowPartitionsDefinition,
multi_asset,
)
from dagster._utils.warnings import (
experimental_warning,
)
from .asset_utils import (
DAGSTER_DBT_TRANSLATOR_METADATA_KEY,
MANIFEST_METADATA_KEY,
default_asset_check_fn,
default_code_version_fn,
get_deps,
has_self_dependency,
)
from .dagster_dbt_translator import DagsterDbtTranslator, DbtManifestWrapper, validate_translator
from .dbt_manifest import DbtManifestParam, validate_manifest
from .utils import (
ASSET_RESOURCE_TYPES,
dagster_name_fn,
get_dbt_resource_props_by_dbt_unique_id_from_manifest,
select_unique_ids_from_manifest,
)
DUPLICATE_ASSET_KEY_ERROR_MESSAGE = (
"The following dbt resources are configured with identical Dagster asset keys."
" Please ensure that each dbt resource generates a unique Dagster asset key."
" See the reference for configuring Dagster asset keys for your dbt project:"
" https://docs.dagster.io/integrations/dbt/reference#customizing-asset-keys."
)
[docs]def dbt_assets(
*,
manifest: DbtManifestParam,
select: str = "fqn:*",
exclude: Optional[str] = None,
name: Optional[str] = None,
io_manager_key: Optional[str] = None,
partitions_def: Optional[PartitionsDefinition] = None,
dagster_dbt_translator: DagsterDbtTranslator = DagsterDbtTranslator(),
backfill_policy: Optional[BackfillPolicy] = None,
op_tags: Optional[Mapping[str, Any]] = None,
required_resource_keys: Optional[Set[str]] = None,
) -> Callable[..., AssetsDefinition]:
"""Create a definition for how to compute a set of dbt resources, described by a manifest.json.
When invoking dbt commands using :py:class:`~dagster_dbt.DbtCliResource`'s
:py:meth:`~dagster_dbt.DbtCliResource.cli` method, Dagster events are emitted by calling
``yield from`` on the event stream returned by :py:meth:`~dagster_dbt.DbtCliInvocation.stream`.
Args:
manifest (Union[Mapping[str, Any], str, Path]): The contents of a manifest.json file
or the path to a manifest.json file. A manifest.json contains a representation of a
dbt project (models, tests, macros, etc). We use this representation to create
corresponding Dagster assets.
select (str): A dbt selection string for the models in a project that you want
to include. Defaults to ``fqn:*``.
exclude (Optional[str]): A dbt selection string for the models in a project that you want
to exclude. Defaults to "".
name (Optional[str]): The name of the op.
io_manager_key (Optional[str]): The IO manager key that will be set on each of the returned
assets. When other ops are downstream of the loaded assets, the IOManager specified
here determines how the inputs to those ops are loaded. Defaults to "io_manager".
partitions_def (Optional[PartitionsDefinition]): Defines the set of partition keys that
compose the dbt assets.
dagster_dbt_translator (Optional[DagsterDbtTranslator]): Allows customizing how to map
dbt models, seeds, etc. to asset keys and asset metadata.
backfill_policy (Optional[BackfillPolicy]): If a partitions_def is defined, this determines
how to execute backfills that target multiple partitions. If a time window partition
definition is used, this parameter defaults to a single-run policy.
op_tags (Optional[Dict[str, Any]]): A dictionary of tags for the op that computes the assets.
Frameworks may expect and require certain metadata to be attached to a op. Values that
are not strings will be json encoded and must meet the criteria that
`json.loads(json.dumps(value)) == value`.
required_resource_keys (Optional[Set[str]]): Set of required resource handles.
Examples:
Running ``dbt build`` for a dbt project:
.. code-block:: python
from pathlib import Path
from dagster import AssetExecutionContext
from dagster_dbt import DbtCliResource, dbt_assets
@dbt_assets(manifest=Path("target", "manifest.json"))
def my_dbt_assets(context: AssetExecutionContext, dbt: DbtCliResource):
yield from dbt.cli(["build"], context=context).stream()
Running dbt commands with flags:
.. code-block:: python
from pathlib import Path
from dagster import AssetExecutionContext
from dagster_dbt import DbtCliResource, dbt_assets
@dbt_assets(manifest=Path("target", "manifest.json"))
def my_dbt_assets(context: AssetExecutionContext, dbt: DbtCliResource):
yield from dbt.cli(["build", "--full-refresh"], context=context).stream()
Running dbt commands with ``--vars``:
.. code-block:: python
import json
from pathlib import Path
from dagster import AssetExecutionContext
from dagster_dbt import DbtCliResource, dbt_assets
@dbt_assets(manifest=Path("target", "manifest.json"))
def my_dbt_assets(context: AssetExecutionContext, dbt: DbtCliResource):
dbt_vars = {"key": "value"}
yield from dbt.cli(["build", "--vars", json.dumps(dbt_vars)], context=context).stream()
Retrieving dbt artifacts after running a dbt command:
.. code-block:: python
from pathlib import Path
from dagster import AssetExecutionContext
from dagster_dbt import DbtCliResource, dbt_assets
@dbt_assets(manifest=Path("target", "manifest.json"))
def my_dbt_assets(context: AssetExecutionContext, dbt: DbtCliResource):
dbt_build_invocation = dbt.cli(["build"], context=context)
yield from dbt_build_invocation.stream()
run_results_json = dbt_build_invocation.get_artifact("run_results.json")
Running multiple dbt commands for a dbt project:
.. code-block:: python
from pathlib import Path
from dagster import AssetExecutionContext
from dagster_dbt import DbtCliResource, dbt_assets
@dbt_assets(manifest=Path("target", "manifest.json"))
def my_dbt_assets(context: AssetExecutionContext, dbt: DbtCliResource):
yield from dbt.cli(["run"], context=context).stream()
yield from dbt.cli(["test"], context=context).stream()
Customizing the Dagster asset metadata inferred from a dbt project using :py:class:`~dagster_dbt.DagsterDbtTranslator`:
.. code-block:: python
from pathlib import Path
from dagster import AssetExecutionContext
from dagster_dbt import DagsterDbtTranslator, DbtCliResource, dbt_assets
class CustomDagsterDbtTranslator(DagsterDbtTranslator):
...
@dbt_assets(
manifest=Path("target", "manifest.json"),
dagster_dbt_translator=CustomDagsterDbtTranslator(),
)
def my_dbt_assets(context: AssetExecutionContext, dbt: DbtCliResource):
yield from dbt.cli(["build"], context=context).stream()
Using a custom resource key for dbt:
.. code-block:: python
from pathlib import Path
from dagster import AssetExecutionContext
from dagster_dbt import DbtCliResource, dbt_assets
@dbt_assets(manifest=Path("target", "manifest.json"))
def my_dbt_assets(context: AssetExecutionContext, my_custom_dbt_resource_key: DbtCliResource):
yield from my_custom_dbt_resource_key.cli(["build"], context=context).stream()
Using a dynamically generated resource key for dbt using `required_resource_keys`:
.. code-block:: python
from pathlib import Path
from dagster import AssetExecutionContext
from dagster_dbt import DbtCliResource, dbt_assets
dbt_resource_key = "my_custom_dbt_resource_key"
@dbt_assets(manifest=Path("target", "manifest.json"), required_resource_keys={my_custom_dbt_resource_key})
def my_dbt_assets(context: AssetExecutionContext):
dbt = getattr(context.resources, dbt_resource_key)
yield from dbt.cli(["build"], context=context).stream()
Invoking another Dagster :py:class:`~dagster.ResourceDefinition` alongside dbt:
.. code-block:: python
from pathlib import Path
from dagster import AssetExecutionContext
from dagster_dbt import DbtCliResource, dbt_assets
from dagster_slack import SlackResource
@dbt_assets(manifest=Path("target", "manifest.json"))
def my_dbt_assets(context: AssetExecutionContext, dbt: DbtCliResource, slack: SlackResource):
yield from dbt.cli(["build"], context=context).stream()
slack_client = slack.get_client()
slack_client.chat_postMessage(channel="#my-channel", text="dbt build succeeded!")
Defining and accessing Dagster :py:class:`~dagster.Config` alongside dbt:
.. code-block:: python
from pathlib import Path
from dagster import AssetExecutionContext, Config
from dagster_dbt import DbtCliResource, dbt_assets
class MyDbtConfig(Config):
full_refresh: bool
@dbt_assets(manifest=Path("target", "manifest.json"))
def my_dbt_assets(context: AssetExecutionContext, dbt: DbtCliResource, config: MyDbtConfig):
dbt_build_args = ["build"]
if config.full_refresh:
dbt_build_args += ["--full-refresh"]
yield from dbt.cli(dbt_build_args, context=context).stream()
Defining Dagster :py:class:`~dagster.PartitionDefinition` alongside dbt:
.. code-block:: python
import json
from pathlib import Path
from dagster import AssetExecutionContext, DailyPartitionDefinition
from dagster_dbt import DbtCliResource, dbt_assets
@dbt_assets(
manifest=Path("target", "manifest.json"),
partitions_def=DailyPartitionsDefinition(start_date="2023-01-01")
)
def partitionshop_dbt_assets(context: AssetExecutionContext, dbt: DbtCliResource):
time_window = context.partition_time_window
dbt_vars = {
"min_date": time_window.start.isoformat(),
"max_date": time_window.end.isoformat()
}
dbt_build_args = ["build", "--vars", json.dumps(dbt_vars)]
yield from dbt.cli(dbt_build_args, context=context).stream()
"""
dagster_dbt_translator = validate_translator(dagster_dbt_translator)
manifest = validate_manifest(manifest)
unique_ids = select_unique_ids_from_manifest(
select=select, exclude=exclude or "", manifest_json=manifest
)
node_info_by_dbt_unique_id = get_dbt_resource_props_by_dbt_unique_id_from_manifest(manifest)
dbt_unique_id_deps = get_deps(
dbt_nodes=node_info_by_dbt_unique_id,
selected_unique_ids=unique_ids,
asset_resource_types=ASSET_RESOURCE_TYPES,
)
(
deps,
outs,
internal_asset_deps,
check_specs,
) = get_dbt_multi_asset_args(
dbt_nodes=node_info_by_dbt_unique_id,
dbt_unique_id_deps=dbt_unique_id_deps,
io_manager_key=io_manager_key,
manifest=manifest,
dagster_dbt_translator=dagster_dbt_translator,
)
if op_tags and "dagster-dbt/select" in op_tags:
raise DagsterInvalidDefinitionError(
"To specify a dbt selection, use the 'select' argument, not 'dagster-dbt/select'"
" with op_tags"
)
if op_tags and "dagster-dbt/exclude" in op_tags:
raise DagsterInvalidDefinitionError(
"To specify a dbt exclusion, use the 'exclude' argument, not 'dagster-dbt/exclude'"
" with op_tags"
)
resolved_op_tags = {
**({"dagster-dbt/select": select} if select else {}),
**({"dagster-dbt/exclude": exclude} if exclude else {}),
**(op_tags if op_tags else {}),
}
if (
partitions_def
and isinstance(partitions_def, TimeWindowPartitionsDefinition)
and not backfill_policy
):
backfill_policy = BackfillPolicy.single_run()
def inner(fn) -> AssetsDefinition:
asset_definition = multi_asset(
outs=outs,
name=name,
internal_asset_deps=internal_asset_deps,
deps=deps,
required_resource_keys=required_resource_keys,
compute_kind="dbt",
partitions_def=partitions_def,
can_subset=True,
op_tags=resolved_op_tags,
check_specs=check_specs,
backfill_policy=backfill_policy,
)(fn)
return asset_definition
return inner
def get_dbt_multi_asset_args(
dbt_nodes: Mapping[str, Any],
dbt_unique_id_deps: Mapping[str, FrozenSet[str]],
io_manager_key: Optional[str],
manifest: Mapping[str, Any],
dagster_dbt_translator: DagsterDbtTranslator,
) -> Tuple[
Sequence[AssetDep],
Dict[str, AssetOut],
Dict[str, Set[AssetKey]],
Sequence[AssetCheckSpec],
]:
deps: Set[AssetDep] = set()
outs: Dict[str, AssetOut] = {}
internal_asset_deps: Dict[str, Set[AssetKey]] = {}
check_specs: Sequence[AssetCheckSpec] = []
dbt_unique_id_and_resource_types_by_asset_key: Dict[AssetKey, Tuple[Set[str], Set[str]]] = {}
for unique_id, parent_unique_ids in dbt_unique_id_deps.items():
dbt_resource_props = dbt_nodes[unique_id]
output_name = dagster_name_fn(dbt_resource_props)
asset_key = dagster_dbt_translator.get_asset_key(dbt_resource_props)
unique_ids_for_asset_key, resource_types_for_asset_key = (
dbt_unique_id_and_resource_types_by_asset_key.setdefault(asset_key, (set(), set()))
)
unique_ids_for_asset_key.add(unique_id)
resource_types_for_asset_key.add(dbt_resource_props["resource_type"])
outs[output_name] = AssetOut(
key=asset_key,
dagster_type=Nothing,
io_manager_key=io_manager_key,
description=dagster_dbt_translator.get_description(dbt_resource_props),
is_required=False,
metadata={ # type: ignore
**dagster_dbt_translator.get_metadata(dbt_resource_props),
MANIFEST_METADATA_KEY: DbtManifestWrapper(manifest=manifest),
DAGSTER_DBT_TRANSLATOR_METADATA_KEY: dagster_dbt_translator,
},
group_name=dagster_dbt_translator.get_group_name(dbt_resource_props),
code_version=default_code_version_fn(dbt_resource_props),
freshness_policy=dagster_dbt_translator.get_freshness_policy(dbt_resource_props),
auto_materialize_policy=dagster_dbt_translator.get_auto_materialize_policy(
dbt_resource_props
),
)
test_unique_ids = [
child_unique_id
for child_unique_id in manifest["child_map"][unique_id]
if child_unique_id.startswith("test")
]
for test_unique_id in test_unique_ids:
check_spec = default_asset_check_fn(
manifest, dbt_nodes, dagster_dbt_translator, asset_key, unique_id, test_unique_id
)
if check_spec:
check_specs.append(check_spec)
# Translate parent unique ids to dependencies
output_internal_deps = internal_asset_deps.setdefault(output_name, set())
for parent_unique_id in parent_unique_ids:
dbt_parent_resource_props = dbt_nodes[parent_unique_id]
parent_asset_key = dagster_dbt_translator.get_asset_key(dbt_parent_resource_props)
parent_partition_mapping = dagster_dbt_translator.get_partition_mapping(
dbt_resource_props,
dbt_parent_resource_props=dbt_parent_resource_props,
)
parent_unique_ids_for_asset_key, parent_resource_types_for_asset_key = (
dbt_unique_id_and_resource_types_by_asset_key.setdefault(
parent_asset_key, (set(), set())
)
)
parent_unique_ids_for_asset_key.add(parent_unique_id)
parent_resource_types_for_asset_key.add(dbt_parent_resource_props["resource_type"])
if parent_partition_mapping:
experimental_warning("DagsterDbtTranslator.get_partition_mapping")
# Add this parent as an internal dependency
output_internal_deps.add(parent_asset_key)
# Mark this parent as an input if it has no dependencies
if parent_unique_id not in dbt_unique_id_deps:
deps.add(
AssetDep(
asset=parent_asset_key,
partition_mapping=parent_partition_mapping,
)
)
self_partition_mapping = dagster_dbt_translator.get_partition_mapping(
dbt_resource_props,
dbt_parent_resource_props=dbt_resource_props,
)
if self_partition_mapping and has_self_dependency(dbt_resource_props):
experimental_warning("+meta.dagster.has_self_dependency")
deps.add(
AssetDep(
asset=asset_key,
partition_mapping=self_partition_mapping,
)
)
output_internal_deps.add(asset_key)
dbt_unique_ids_by_duplicate_asset_key = {
asset_key: sorted(unique_ids)
for asset_key, (
unique_ids,
resource_types,
) in dbt_unique_id_and_resource_types_by_asset_key.items()
if len(unique_ids) != 1
and not (
resource_types == set(["source"])
and dagster_dbt_translator.settings.enable_duplicate_source_asset_keys
)
}
if dbt_unique_ids_by_duplicate_asset_key:
error_messages = []
for asset_key, unique_ids in dbt_unique_ids_by_duplicate_asset_key.items():
formatted_ids = []
for id in unique_ids:
unique_id_file_path = dbt_nodes[id]["original_file_path"]
formatted_ids.append(f" - `{id}` ({unique_id_file_path})")
error_messages.append(
"\n".join(
[
f"The following dbt resources have the asset key `{asset_key.path}`:",
*formatted_ids,
]
)
)
raise DagsterInvalidDefinitionError(
"\n\n".join([DUPLICATE_ASSET_KEY_ERROR_MESSAGE, *error_messages])
)
return list(deps), outs, internal_asset_deps, check_specs